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Abstract

The two-degree-of-freedom system (TDFS)
method used to derive force specifications for
force limited vibration tests at JPL is
reviewed and some limitations of the method
and of the simple TDFS model are discussed. A
new improved “frequency shift” force
prediction method, is developed and applied to
a more complex model where the load and
source have both residual and modal masses.

Background

During the past three years, force limiting
has been utilized in ten JPL vibration tests
to prevent overtesting of flight hardware.1,2
In force limited vibration tests, the shaker
force is limited to the predicted maximum
flight forces. In recent JPL tests, the
maximum flight forces have been predicted
using the two-degree-of-freedom system
(TDFS) shown in the upper right corner of
Fig. 1. The spectrum of the maximum force
(Sff) was calculated from Eq. 1:3

Sff = M22 Saa E(x22)E(x12) (1)

where: M2 is the load oscillator mass, Saa is
the spectrum of the source acceleration, and
E(x2z)/E(xl  z) is the ratio of load to source
mean-square responses from TDFS random
vibration analysis.q  The force spectrum in
Eq.1, normalized by the load oscillator mass
squared and the source acceleration
spectrum, is plotted, as open symbols,
against the ratio of the load mass to the source
mass in Fig. 1. For small values of the ratio
of load to source mass, the load has little
effect on the source and the normalized
force spectrum asymptote is QV2, where Q is
the amplification factor, i.e. the reciprocal of
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twice the critical damping ratio. For
values of mass ratio, the normalized

large
force

spectrum approaches unity, i.e. there is no
amplification regardless of the Q value.

To apply Eq. 1 to a vibration test, it is
necessary to identify the source oscillator
acceleration as the acceleration test
specification; and to determine the masses of
the source and load oscillators from the
properties of the actual distributed systems.
The two oscillators in Fig. 1 represent
coupled resonant modes of the source and load
in each frequency band, e.g. one-third
octaves, so the oscillator masses depend on
frequency. These masses represent the mass-
Iike, as opposed to damping or stiffness,
properties of the modes as seen at the
source/load connection or drive point. In the
JPL force limited vibration testing
applications, the oscillator mass has been
taken as the residual mass (the sum of the
effective masses of all modes with resonances
above the excitation frequency) from FEM
analyses 5, or alternately as the smoothed
frequency response function (FRF) of the
ratio of drive point force to acceleration
measured with a shaker or impact hammer.

The single mass models of the source and load
in Fig. 1 and the related Eq. 1 have inherent
conceptual difficulties and are limited in
their capability to accurately represent the
force contributions of both resonant and
nonresonant modes. These deficiencies and the
desire to predict peak rather than mean-
square forces provided the motivation to
develop an improved force prediction method.



&uencv Shift Method of Predicting
Maximum Force

This report discusses an improved method for
calculating the maximum interface force
between two vibratory systems for the
purpose of defining force limits for vibration
tests. Some of the rationale for the method
was provided by Smallwood.G For both the
coupled source and load flight configuration
and the isolated load vibration test
configuration, the interface force
autospectrum Sff is related to the interface
acceleration autospectrum Saa by Eq. 2, which
is F=MA for random vibration:

Sff(w) = IM2(w)12  Saa(w) ( 2 )

where: M2 is the load dynamic mass, i.e. the
FRF’s (magnitude and phase) of the ratio of
the drive point force to acceleration, which is
the same for both configurations. (Bold type
is used herein to indicate a FRF.) The term
“dynamic” mass is used here to include the
complete dynamic response including
resonance and stiffness effects not included by
the previously used terms “oscillator” mass
and “effective” mass. The radian frequency w
dependence is shown explicitly in Eq. 2 to
emphasize that the relation between force and
acceleration applies at each frequency.

The application of Eq. 2 to a coupled source
and load system is illustrated in the Fig. 2
FRF curves, which are for the simple TDFS
model shown in Fig. 1 with identical
oscillators and unit masses and excitation.7
Fig. 2a shows the magnitude of the load
dynamic mass, which peaks at the load
natural frequency f. with an amplitude of Q,
times the input. Fig. 2 b and c show the
magnitude of the coupled system interface
acceleration and force, respectively. Eq. 2
may be used to calculate frequency point by
point the force in Fig. 2C from the load
dynamic mass in Fig. 2a and the acceleration
in Fig. 2b. For example, applying Eq. 2 at the
0.62 Hz coupled system resonance frequency
in Fig. 2, the load dynamic mass of

approximately 1.6 times the peak
acceleration of 50 equals the peak force of
80, and at 1.62 Hz the load dynamic mass of
approximately 0.6 times the peak
acceleration of 8 equals the peak force of 5.
Notice from Fig. 2 that both the interface
force and acceleration peak at the coupled
system natural frequencies, 0.62f0 and
1.62f0 for the identical Fig.1 oscillators. It
can be shown that this is a general result, by
expresing the interface force and acceleration
in terms of the numerators and denominators
of the drive point and transfer dynamic
masses.

As a first example of the improved method of
calculating force limits, the evaluation of the
maximum force for the simple TDFS shown in
Fig. 1 is revisited. The characteristic
equation for a dynamic absorber, from Den
Hartog8,  is used to calculate the coupled
system resonance frequencies (w+ and w.) for
the oscillators in Fig. 1:

(w/w.)  2 = (l+u/2)  * (u+up/4)  0.5 ( 3 )

where: WO is the resonance frequency of the
load oscillator and u is the ratio of load to
source masses (M#MI  ). The peak in the
normalized interface force spectrum at each
of the two resonance frequencies is calculated
from the magnitude squared of the load
dynamic mass using Eq. 2 which for the TDFS
in Fig.1 becomes:

Sff /(Saa M22) = (I+ EWQ2)I
[(1-W) p +Op/Qp] (4)

where B is the ratio of excitation frequency w
to load resonance frequency WO.

The new method is called the “frequency
shift” method because the maximum forces in
the coupled system are calculated by
evaluating the load dynamic mass of Eq. 4 at
the coupled system, or shifted, resonance
frequencies w+ and w. from Eq. 3 instead of at
its peak at the uncoupled load resonance
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frequency WO. The ratio of the coupled system
maximum force to the force in a conventional
vibration test, the so called “knock down”
factor, is equal to the ratio of the value of the
load dynamic mass at the shifted frequencies
to the peak value at the uncoupled load
resonance frequency.

Figure 1 compares the spectral peak value of
the normalized force spectrum (the greater
of the values at w+ and w.) calculated from Eq.
4 with the maximum normalized force
spectrum calculated from Eq. 1 using the
mean-square response ratio. Notice that for
large values of the ratio of load to source
mass the two calculations are in agreement
For small values of the mass ratio, the peak
result is a factor of two higher.

Calculation of Maximum Force for Residual
and Modal Mass Model

Herein, the frequency shift method is used to
calculate the maximum force for a more
complex TDFS model in which the source and
load each have two masses to represent both
the residual and modal mass of a continuous
system. It is assumed that the acceleration
specification correctly envelopes the higher
of the two acceleration peaks of the coupled
TDFS system. The calculation of the
normalized maximum force requires
accounting for the ratio of the acceleration
peaks at the two coupled system resonance
frequencies. Calculation of the maximum
force for this new model also necessitates a
tuning analysis, conducted in 3% increments,
considering different ratios of the load and
source uncoupled resonance frequencies. In
addition, the complexity of the model requires
that the results be presented in parametric
curves for different ratios of modal to
residual mass for both the source and load.

Figure 3a shows a model of a source and load
in which each mode may be represented as a
single-degree-of-freedom system attached to
the connection interface. (This type of model
is sometimes called an asparagus patch

model.) Derivation of this type of model from
a FEM analysis requires normalizing the
modes so that the inertial forces equal the
reaction forces at the interfaces

When this model is excited at the interface at
a frequency near the resonance frequency wn

of the nth mode, the model may be simplified
to that in Fig. 3b, where mn is the modal mass
of the rlh mode and Mn is the residual mass,
i.e. the sum of the masses of the nth and all
higher resonance frequency modes. Finally,
Fig. 3C shows the coupled system model which
results from coupling a residual and modal
mass model of both the source and load. The
ratio of modal to residual mass is al =ml/Ml
for the source and a2=m2/M2 for the load; the
ratio of load to source resonance frequency is
Q=w2/wI; and the ratio of load to source
residual mass is p= M2/M1. The maximum
force for a model similar to that in Fig. 3C

was calculated by SmallwoodG for the special
case of equal modal and resictual  masses for
both the source and load (a1=a2=l  ) and a
ratio of load to source resonance frequency of
square root of two (Q=2 05).

The undamped resonance frequencies of the
coupled system in Fig. 3C are solutions of:

(1-812)  (1-132Z) +  al(l-132z)  +~(l-Blz)
(1- EIz2) +paz (l-1312) = O (5)

where 81=w/wl, 132=wIw2 and W1 & W2 are
the uncoupled system resonance frequencies.

The w+ and w- resonance frequencies are
found from the quadratic equation solution:

W+ &w-= -B/2 ? (B2-4C)0.5/2

where:

B = [(l+p+al )/Qz+(l+U+paz)]/(

and C = (l+p+a1+pa2)/(l  +p)fX’

(6)

+p)
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The magnitude squared of the load dynamic
mass for the residual and modal mass model
is:

lM212/M#’  =

{[(1 B22)+a2]2+Bpp(l  +a2)2/Q22}/
[(1-D22)2+r322/Q22] ( 7 )

where Q2 is the amplification factor of the
load resonances. Substituting the frequencies
from Eq. 6 into Eq. 7, yields the ratio of the
interface force spectral density peak to
interface acceleration spectral density peak
at each of the two coupled system resonance
frequencies.

The desired result is the ratio of the larger of
the two force spectral density peaks to the
larger of the two acceleration spectral
density peaks, the former being the desired
force limit and the latter corresponding to the
acceleration specification. A problem is that
the peak acceleration and peak force do not
necessarily occur at the same frequency, e.g.
the peak acceleration may be at the higher of
the two coupled system resonance frequencies
while the peak force occurs at the lower of
the two frequencies. This problem is
particularly pronounced when the resonance
frequencies of the load and source are
approximately equal, Q near unity.

In order to obtain the desired result, it is
necessary to calculate the ratio of the two
acceleration spectral density peaks of the
coupled system response and this ratio
depends on how the system is excited. For
example, one value of the acceleration ratio is
obtained if it is assumed that the free
acceleration of the residual mass of the
source system is constant with frequency, and
a different value is obtained if it is assumed
that the modal mass of the source system is
excited with a force which is constant with
frequency. Herein the latter is assumed, since
it is thought to be more typical. Once the
acceleration spectrum peak ratio is obtained,
the dynamic masses in Eq. 7 are scaled by
multiplying the dynamic mass at the

frequency corresponding to the lower
acceleration peak by the ratio of the lower to
the higher acceleration and by multiplying
the dynamic mass at the other frequency by
unity. Finally, the larger of the two thus
scaled dynamic masses is used as the ratio of
maximum force to acceleration specification.

The magnitude squared of the ratio of coupled
system interface acceleration A to the free
acceleration AIO of the residual mass of the
source is:

lA/AIOl 2 =  lM1/(Ml+ M2)I p (8)

where Ml is obtained from Eq. 7 by replacing
the subscript 2 by 1. The values of the above
ratio at each of the two coupled system
resonance frequencies is obtained by
substituting the coupled system resonance
frequencies from Eq. 6 into Eq. 8. However,
as previously discussed, the free acceleration
AIO will not generally be the same at the two
resonance frequencies. For an external force
Fe acting on the source modal mass ml the
magnitude squared of the free acceleration
AIO is:

lA1o/(Fe/ml)l  2= f314(I+t312/Q12)/

{[(1 -612) (1- Blz/al)-l]p
+131 G(l+l/al)p/Q12}  ( 9 )

Combining Eq. 8 and Eq. 9 yields the desired
ratio of interface acceleration to external
force. Assuming that the external force is the
same at the lower and upper coupled system
resonance frequencies, the interface
acceleration ratio at the two frequencies is
calculated by evaluating Eqs. 8 and 9.

The final step in the derivation of the
maximum force is to vary the ratio, Q =
w2/wl, of the resonance frequencies of the
load to the source to insure that the maximum
value of the interface force is found for all
the mass and damping combinations
considered. A tuning analysis was conducted in
which the value of the frequency ratio



●

squared G’ was varied by 1/16ths from 1 to
37/1 6ths, which corresponds to 3%
increments in frequency ratio. The maximum
values of the force spectra, normalized by the
maximum values of the acceleration spectra
and the load residual mass squared, are listed
in Table 1 for a load amplification values Q2

of 20. (Results for other Q’s are available
from author.) The maximum forces are
rounded to whole numbers. The tuning
frequency ratio squared in 16ths, which
resulted in the maximum forces, are
identified by the digits to the right of the
decimal in Table 1.

Use of Table to Predict Force Limits

To use the new force limit results, it is
necessary to have both the residual and modal
masses of the source and load as a function of
frequency, either from an FEM analysis, or
from a test, or from both. FEM analyses with
the modal masses normalized as in Wada5
provide both the modal and residual effective
masses. Where tests have been used to
measure the effective mass, with either a
shaker or tap hammer instrumented to
measure force, the smoothed FRF has been
taken as the residual mass in deriving the
force specifications for past JPL test
projects.7@  The modal mass is by definition
the negative change in the residual mass at
the resonance frequencies, but some work is
needed to develop a procedure for deriving the
modal masses from test data. Currently, it is
recommended that force limits be calculated
using both the simple TDFS model and the new
residual and modal mass model, and that the
higher force calculated in each frequency
band be used to limit the force in the test.
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Figure 2. Load Dynamic Mass, Acceleration, and Force Frequency
Response Functions for Identical Oscillator TDFS
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